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Abstract

Evidence for the existence of discrete submovements underlying continuous human movement
has motivated many attempts to “extract” them. Although they produce visually convincing
results, all of the methodologies that have been employed are prone to produce spurious
decompositions. Examples of potential failures are given. A branch-and-bound algorithm
for submovement extraction, capable of global nonlinear minimization (and hence, capable

of avoiding spurious decompositions) is developed and demonstrated.



0.1 Introduction

Several phenomena in human motor behavior suggest that human movement is composed

of discrete units or submovements. Observations of slow movements (Vallbo and Wessberg

1993), eye saccades (Collewijn et al. 1988), cyclical movements (Woodworth 1899; Crossman
and Goodeve 1983; Doeringer 1999) ballistic movements (Morasso 1981), and movements re-
quiring high accuracy are all consistent with a theory of submovements. Observations such
as these have motivated several attempts to produce a general methodology for isolating
submovements, for example, (Morasso and Mussa-Ivaldi 1982; Flash and Henis 1991; Milner
1992; Berthier 1996; Lee et al. 1997; Burdet and Milner 1998). If successful, such decom-
positions of movement into their constituent discrete building blocks would provide a new
window through which to observe the operation of the human motor control system. In this
paper, we show that previous decomposition attempts can produce spurious results, and we

present an algorithm that is guaranteed not to do so.

Submovements are theoretically attractive, because they provide a compact language
for concisely coding movement. Under the working hypothesis that these discrete units
of movement exist, the ability to accurately isolate and characterize them would provide
a description of human movement on a fundamental level that has not previously been
available. As such, submovement analysis could provide new insights into studies of motor

performance, rehabilitation, and the human motor control system.



However, since the posited underlying discrete commands are not directly available,
there is no way to verify that a given decomposition is accurate. Accuracy can be inferred
only by examination of the residual error. It is important to note that, although inaccu-
rate decompositions may only have slightly higher residual error, the characteristics of the
submovements that they employ may be completely spurious. Figure 1c and d shows an
example of this phenomenon, and will be discussed in more detail in the following section.
Of course, even zero decomposition error does not prove that submovements actually exist.
Nevertheless, in testing an empirically-motivated theory of submovements, highly successful

decompositions would certainly lend some degree of support to the theory.

Submovement decomposition is a non-linear optimization problem: simultaneously max-
imizing goodness of fit and minimizing the number of submovements used, given a submove-
ment shape (e.g. minimum-jerk (Hogan 1984) or Gaussian (Crossman and Goodeve 1983);
see Appendix) and a summing modality (e.g. scalar summation (Morasso and Mussa- Ivaldi
1982) or vector summation (Flash and Henis 1991)). As a non-linear optimization problem,
it may have multiple local minima. However, all the optimization methods that have been
applied to it previously are sensitive to getting caught in local minima and cannot guar-
antee a globally optimal solution. Gradient descent (Berthier 1996) and Powell’s Direction
Set Method (Lee et al. 1997) have been used in this context, as well as manually adjust-
ing (“eyeballing”) submovement parameters (Morasso and Mussa-Ivaldi 1982, Milner 1992).

The optimality of the solution for these methods depends heavily on the quality of the initial



guess; unless the initial guess is in the neighborhood of the global minimum, they will not

find the best solution.

0.1.1 The difficulty of making a good initial guess

Making an initial guess that is in the neighborhood of the solution is not trivial. The right
column of Figure 1 shows several examples of speed profiles that pose problems for existing
decomposition methods. Each speed profile is composed of minimum-jerk submovements
which sum in a scalar fashion. Despite the fact that only a few, simply-parameterized
submovements are used, the false decompositions are accurate to within as little as 0.5%.
This illustrates the challenge that decomposition algorithms face in attempting to find the

optimal solution.

Each speed profile shown has a different number of peaks than it has submovements.
Any method that uses the number of peaks to estimate the number of submovements would
fail to make an initial guess in the neighborhood of the global optimum. Examples of such

failed decompositions are shown in Figure 1, panels a, e, and h.

The second movement (panels ¢ and d ) of Figure 1 is of particular interest. It resembles
the observed speed profiles of target-directed movements made by human subjects under

moderate accuracy constraints (Milner and Ijaz 1990). Although decompositions similar to



those shown in panel ¢ have been assumed in previous analyses of such movements (Milner
1992), this example shows that other combinations of submovements can yield very similar
shapes. This case illustrates the difficulty in making objective initial guesses and illustrates
the high level of caution required when employing any technique that relies on subjective

judgments.

Listed below are several methods for making initial guesses that have been previously
applied to submovement decomposition. As originally implemented, some of the initial
guessing methods below have not been used to initialize local minimization routines (such

as gradient descent), but could be used to do so in theory.

0.1.2 Initial guess methods

0.1.2.1 Subjective selection

Lee et al. (1997) have made initial guesses based on subjective estimation of submovement
characteristics. This method is subject to the limitations illustrated in Figure 1; submove-
ment characteristics are difficult to intuit based on the speed profile, and therefore the initial

guess is not guaranteed to be near the global optimum.



0.1.2.2 Matching Pursuit

(Mallat and Zhang 1993). Matching Pursuit is a “greedy” algorithm; it finds the best fit for
a single element at a time, rather than for a set of elements. Matching Pursuit iteratively
finds the submovement which, when subtracted from the function, minimizes the residual
error. This repeats until some minimum error threshold is reached. The limitations of
the Matching Pursuit algorithm are described in detail by Chen et al.(1998). The fact that
Matching Pursuit fits a single submovement at a time does not allow it to optimize the fit for
all submovements. Simple functions composed of as few as two submovements are incorrectly

decomposed, because of the greedy nature of the algorithm, as shown by Doeringer (1999).

0.1.2.3 Local fitting of the highest peak

The Irregular Sampling Radial Basis Function algorithm (Krebs 1997) and the method of
Berthier (Berthier 1996) are also greedy algorithms. At each iteration, both of these algo-
rithms fit a submovement to the highest speed peak and its local neighborhood, and the fit
function is subtracted from the original speed profile. As in Matching Pursuit, the process
is repeated until either an error threshold is reached or a maximum number of submove-
ments are fit. As illustrated in Figure 1, aligning submovements with the highest speed peak
provides no guarantee that the sub-functions chosen actually coincide with those used to

construct the original function.



0.1.2.4 Milner’s method

Milner used zero velocity and maximum curvature points along individual axes to mark the
onset of submovements in 3D movements (Milner 1992). As implemented, Milner’s method
is dependent on the choice of coordinate system and leads to a somewhat arbitrary division
of the movement into submovements. Using maximum curvature points as submovement
delimiters suffers additionally from the fact that, although curvature tends to be maximum
between submovements, it still does not need to be significant. Consecutive submovements

in the same direction may have no clear peak in curvature by which to distinguish them.

0.1.2.5 High Resolution Pursuit

Another greedy algorithm, High Resolution Pursuit (HRP) (Jaggi et al. 1996) is similar to
Matching Pursuit in that it minimizes the residual error, but differs in that it emphasizes
local fidelity of the fit and does not necessarily seek out the highest peak. Unfortunately,
local fidelity of fit is not generally the best way to estimate submovements’ characteristics.
Consider for example the movement depicted in Figure 1k; HRP would likely fail to make
an accurate initial guess for a speed profile, since the chief characteristics of the speed profile

do not resemble any of its component submovements.

The second movement of Figure 1 (panels ¢ and d ) provides an informative benchmark



for gauging an algorithm’s decomposition ability; it is both simple and resembles laboratory
data. However, even assuming a priori knowledge of the correct number of submovements,
the initial guesses of Milner’s method and each of the greedy algorithms (Matching Pursuit,
ISRBF, Berthier’s method, and High Resolution Pursuit) yield solutions that resemble Figure

lc. Both the amplitude and the peak location of the decompositions would be spurious.

None of the initial guess methods listed above guarantee a guess that is in the neigh-
borhood of the global optimum, and as shown in Figure 1c and d, given plausible biological
data they may yield inaccurate and misleading decompositions. Minimization based on these
methods find, at best, locally optimal solutions to the submovement extraction problem. In
order to reliably find the global minimum and solve the decomposition problem accurately,

an algorithm capable of global nonlinear optimization is necessary.

0.2 Method

Branch-and-bound algorithms have been successfully applied to classical problems, such as
the traveling salesman problem, as well as to economics problems, (Little et al. 1963; Little

1966; Morin 1974) and are commonly used whenever it is necessary to find a globally optimal

solution to a nonlinear problem, rather than an approximate or a locally optimal solution.

“Branch-and-bound” actually describes a class of algorithms, rather than a specific im-



plementation. The idea underlying branch-and-bound algorithms is simple: to find the global
minimum of a function over a bounded parameter space, repeatedly divide (branch) the pa-
rameter space into subspaces and bound the value of the function over each subspace. If the
lower bound of the function over a subspace is higher than a known value of the function
elsewhere, that subspace need not be searched further. This continues until the location

of the solution is known sufficiently well. This algorithm requires that each parameter be

bounded.

The application of the branch-and-bound algorithm to submovement extraction is straight-
forward. Consider a speed profile, g, and the current estimate of the speed profile f(p), given

by

f(p) =551\ (1)

where each \; is a submovement, completely described by m parameters. p is a vector
containing the parameters of all the submovements. If N is the total number of submove-
ments, then the total number of parameters in p, is given by M = N % m. The formulation
in equation 1 assumes scalar summation of submovements, but could be generalized to other

modes of summation.

The objective function to be minimized is the absolute error, £, given by
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&) = [ 1o f(p)| 2)

The absolute error is chosen, rather than the rms error, because it simplifies the process

of bounding error over solution subspaces. (See Appendix.)

0.2.1 Algorithm outline

The outline of the branch-and-bound algorithm as implemented in this work is as follows

(Refer to Figure 2 for a step-by-step example in one dimension):

1. Bound the solution space. This requires finding upper and lower bounds for each ele-
ment of p. These parameter bounds can be thought of as describing an M-dimensional
hyperbox which contains all permissible values of p. Any given set of parameter values
describes a point within the box, and has a single value of £(p) associated with it.
The goal of the algorithm is to find the point in the hyperbox for which £(p) is at a

minimum.
2. Break the solution space into a number of subspaces.

3. Evaluate £(p.) (the value of £ at the center of a subspace) for all subspaces.

11



4. Set &,y = min(E(p.)) over all subspaces. &y, is the lowest known error in the solution

space.
5. Calculate a lower bound L for £(p) over each subspace.

6. Subspaces for which L > &, cannot contain the solution and therefore are eliminated.
7. Break remaining subspaces down into yet smaller subspaces.

8. Return to step 3 and repeat until a termination criterion is met.

There are a few points in the algorithm that bear further explanation.

0.2.2 Bounding &(p) (step 5)

One method for calculating a lower bound on £(p) over a solution subspace is as follows:

OE(p)
api

for methods of calculating U/ for minimum-jerk, Gaussian, and lognormal speed curves.

1. Calculate an upper bound for

(call it U}) over the subspace. See the Appendix

2. Define 7r;, the span of parameter i, as m; = max(p;) — min(p;) over the subspace.

3. A lower bound, L, for £(p) over the subspace is given by:

7Ti/
L=E&(pc) — Siyy U] (3)
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This guarantees that

for all p in the current subspace.

0.2.3 Breaking down of solution subspaces (step 7)

There are many ways that the solution subspaces could be broken down into smaller sub-
spaces. As implemented, the subspace was simply bisected along the parameter axis that
had the greatest average value of Z:U; on the previous iteration. This was done to shrink

the error bounds of each subspace in as few iterations as possible.

Trisecting, rather than bisecting, may increase performance. When trisecting, values
of p. from previous iterations are also valid p.’s for future iterations. Because previously
calculated values of £(p.) can be retained, subspaces can be divided more quickly with a

very small increase in computational cost. Bisection does not have this advantage.

0.2.4 Terminating the search (step 8)

[terations continue until every portion of the solution space has either 1) been eliminated or
2) has had its error range bounded sufficiently narrowly. The error range of a subspace is

calculated by taking the difference between the error at the center of the subspace, £(p.),

13



and the lower bound of the error over the subspace, L. Once the error range falls below a

certain threshold (£(p.) — L < ¢€) the subspace is not searched further.

This termination criteria does not ensure uniqueness of the solution. Uniqueness checks
can be performed by checking whether the parameters for all the remaining solution spaces

fall within a sufficiently small radius.

0.2.5 Minimizing the number of submovements

It should be noted that, to this point, the branch-and-bound algorithm has assumed that
the number of submovements is given. Minimizing the number of submovements used can
be performed by starting with one submovement and iteratively incrementing the number
of submovements fit to the objective curve until the error falls below a given threshold (see

Figure 3).

0.3 Results

0.3.1 Solution-finding performance

In order to test the solution-finding performance of the branch-and-bound algorithm, two

simulated speed profiles were created, one consisting of two minimum-jerk curves, and one
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consisting of two Gaussian curves. Each was decomposed twice, using two minimum-jerk
curves in one attempt and two Gaussian curves in a second attempt. The results are sum-

marized in Figure 4.

A litmus test for any decomposition algorithm is how well it decomposes a synthetic
speed profile where the submovement characteristics are known beforehand. Due to its
likelihood of producing spurious solutions and to its similarity to patient data, the speed
profile shown in Figure 1c serves as a good initial benchmark. The simulated speed profiles
in Figure 4 were selected specifically to have the characteristics of speed profile in Figure
lc—a single peak with and a clearly discernible “lobe” following, created by summing two
submovements: a small one followed by a larger one. As can be seen in Figure 4, both of
these were successfully decomposed. Not only did the range of decomposition error include

zero, but the submovement characteristics of the original function were captured, as well.

Another test of a decomposition algorithm might be to reliably differentiate between
speed profiles composed of different types of submovements. Figure 4 shows that the bounds
on the decomposition error for each submovement function do not intersect. Non-intersection
of the error bars shows the algorithm’s ability to discriminate between the functions used
to create each curve. It is also interesting to note that, because decomposition error cannot
be negative, the fact that the error bounds extend below the x-axis in some cases illustrates

the conservative nature of error bound estimation.
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The Gaussian function’s infinite tails did not distort this analysis; only the portion of the

function that fell within the time window under consideration was used in error calculations.

0.3.2 Noise sensitivity

In order to test the sensitivity of the branch-and-bound algorithm to noise, a three-submovement
speed profile was constructed (see Figure 5). The movement contained several features that
would prove problematic for existing decomposition algorithms: 1) one of the submovements
had no corresponding peak in the composite speed profile, 2) the composite speed profile had
a peak that did not correspond to an underlying submovement, and 3) the valleys between
peaks were all shallow, a feature which allows a small amount of signal noise to obscure

existing peaks or create new ones.

In a series of tests, the speed profile was summed with varying amounts of Gaussian
noise. Three tests were conducted with a noise signal amplitude of approximately 1%, 2%,
and 5% of the total speed profile amplitude (see Figure 5). Each noise-corrupted speed
profile was decomposed using the branch-and-bound algorithm. In the case of 1% and 2%
noise, submovement parameters extracted from the corrupted data were within 5% of the
original submovement parameters. Even in the case of 5% noise, a significant distortion
of the data, the submovement parameters did not depart far from nominal values, but

remained within 25% (7 of the 9 submovement parameters remained within 10%). This
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is remarkable, given the ease with which dramatically different submovements can produce
similar composite speed profiles (see Figure 1). The parameter error increased approximately
in proportion with the amplitude of the noise signal. The modest and noise-dependent error
in submovement parameters shows a graceful degradation of algorithm performance with
signal corruption. The branch-and-bound algorithm is not overly sensitive to signal noise,

even when it creates new peaks in the composite speed profile.

It should be noted, as illustrated in Figure 1, that existing extraction algorithms, includ-
ing those of Milner (1992), Berthier (1996), and Lee et al. (1997), cannot even be guaranteed
to find a correct solution to the noise-free case. The absence of a peak corresponding to the
first submovement in Figure 5 and the presence of a peak between the second and third sub-
movements pose a difficult, if not insurmountable, challenge for them. Although making use
of acceleration to infer submovements would help identify the first, peak-less submovement,

it would not aid in identifying the second peak as extraneous.

In a second series of noise sensitivity tests, submovements were extracted from the same
speed profile shown in Figure 5, but with noise added to the submovements, rather than to the
overall movement from which they were extracted. The added noise was of the same form for
each submovement—a sum of sines of frequency n/27, where n is a small integer and 7 is the
duration of the submovement—such that the shape of each submovement was altered in the

same way. The amplitude of the noise (and hence the extent of distortion of the underlying
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submovement shape) was varied at 1%, 2%, 5%, and 10% of the submovement amplitude.
Due the computational time required, the precision demanded of the algorithm remained low
for these tests—20% precision was guaranteed (however, it was observed that the solution
produced differed from the true global optimum by only a few percent). Despite this low
accuracy requirement, the submovement parameters did not vary greatly from nominal values
and degraded gracefully as the noise amplitude increased. For example, in every case (1%,

2%, 5%, and 10% noise) the centers of the submovements were in error by no more than 5%.

As discussed in the introduction, the ability of the branch-and-bound algorithm to accu-
rately extract submovements independent of extrema in the kinematic data makes it unique
among submovement extraction algorithms. The fact that the branch-and-bound algorithm
can also locate submovements in the presence of noise is a further demonstration of its

robustness.

0.3.3 Required computing power

The calculations required to do the decompositions in Figure 4 took approximately 30 hours
on a 1.2 GHz Athlon processor. The calculations performed during the analysis for the “Noise
sensitivity” section took over 660 hours on a 1.7 GHz Intel processor. These are very modest
decompositions compared to, say, decomposing the velocity profile produced while slowly

tracing a circle, which may have 10 or more submovements. As the number of submovements
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increases, the dimensionality of the solution space, M, increases. The number of subspaces
to be evaluated at any given iteration is on the order of C™, where C is a function of the
specific problem parameters and the iteration number. As the solution space dimensionality
increases, the computational requirements increase dramatically. Computational cost is the

primary weakness of the branch-and-bound algorithm.

0.3.4 Convergence

Convergence (i.e. reaching the termination criteria) can be guaranteed because of the nature
of the error bounds on each solution subspace. U] for each parameter is a scalar that is a
function of the maximum parameter values in each subspace. Because each parameter is
bounded individually, U/ is bounded as well. Therefore, as the span, 7 of each parameter
decreases, that is, as the subspaces are divided and re-divided, the difference between the
known error at the center of the subspace, £(p.) and the lower bound of the error over the
subspace L will necessarily decrease as well, eventually becoming arbitrarily small. It is

guaranteed to fall below the chosen threshold € at some point.
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0.3.5 Extension to multi-dimensional movements

The branch-and-bound algorithm presented here was demonstrated using one-dimensional
movements, but there is no inherent limitation in the algorithm that precludes its application
to multiple degrees of freedom. All that is required to do this is to define submovements
with sufficient parameters and redefine £ to reflect error in multiple directions. For example,
three-dimensional submovements may be represented by adding parameters with azimuth
and elevation angles to define the direction of movement. The error function, £, can be
redefined as the sum of the errors in the projections along the x-, y-, and z-axes. Likewise,
submovements of other than straight-line trajectories can also implemented. The only con-
straints are that the shape of the trajectories can be parameterized and that the effects on
the error due to changes in those parameters can be reasonably bounded. Aside from the
additional computational expense incurred by increasing the dimensionality of the solution
space, there is no barrier to extracting submovements from multi-dimensional movements.
An example of multi-dimensional submovement extraction is shown in the decomposition of
a simple two-dimensional movement in Figure 7. (See the Appendix for derivations of U] for

three-dimensional submovements.)
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0.3.6 Fixed submovement parameterization does not imply a fixed

submovement shape

The branch-and-bound algorithm requires that all submovements have a fixed parameteriza-
tion, i.e. be describable through the same set of parameters throughout the decomposition
process. In the case of minimum jerk submovements, this implies that all submovements
have the same shape; that is, that they can all be represented by scaled, dilated, and trans-
lated versions of a single “mother shape”. This is not necessarily true for other types of

submovements, however.

Support-bounded lognormal submovements, (Plamondon 1992) for instance, are com-
pletely described by five parameters and can take on a variety of shapes as can be seen in
Figure 6. Keeping fixed the amplitude and start and stop points, the shape can be varied
considerably by varying the other two parameters. One modifies the symmetry and the other

modifies the kurtosis or “fatness” of the curve.

0.4 Conclusion

The branch-and-bound algorithm described above is capable of finding the globally optimal
decomposition for simulated speed data, making it unique among decomposition algorithms.
This advance, if successfully applied to submovement decomposition in actual data, has the
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potential to clarify submovement structure in human movements. The insights gained from
this process would provide a new window for observing the operation of the human motor
control system and may allow for advances in measurement of motor performance, diagnostic

procedures for motor disorders, and identification of motor control strategies.

0.5 Appendix: Calculating U’

What follows is an outline of the calculation of the upper bound on g—;, that is, the change
in error, £, with respect to each parameter, p;, over each subspace. This is also identified as
U’. These derivations are graphically motivated; the optimization criterion has been chosen

to be the absolute error ([ |f(t) — g(t)|dt), rather than the squared error ([(f(t) — g(t))?dt)

&
Op;

in order to facilitate this. The change in error with a change in each parameter (5=) can
be visualized as the change in area between the candidate function the objective function.

The change in error can be no more than the sum of the area newly occupied and the area

vacated by the function during the parameter change.

0.5.1 Minimum-jerk submovements

Minimum-jerk submovements can be uniquely described by three parameters, the amplitude

of the peak A, the time at which the peak occurs ¢, and the duration of the movement w:
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u(r) = TA(30(TEEE)? — g0(TEER )8y 4 30(T YY)t —

w w

IS

<7<t—

= 0 , otherwise (6)

The area under a minimum-jerk curve is equal to wA/1.875.

0.5.1.1 Bounding %g

For all unimodal (single-peaked) submovements, changes in ¢ will both occupy and vacate

no more than a rectangle of width At and height equal to the height of the function.

AE < 2ALA (7)
AE

— <

A = (®)
o€

-~ o<

< 2y (9)

where Aj;ax is the maximum amplitude of the submovement over the current subspace.
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0.5.1.2 Bounding g—i

Changes in w will either vacate area or occupy new area, but not both. The change in area

occupied is given by:

AE = % ( area under min-jerk curve) (10)
Aw [ wA

As - Aw 11

£ w <1.875> (11)
AwA

AE = (12)

AE A

Aw 1875 (13)

o€ Awmax

= <

ow — 1.875 (14)

0.5.1.3 Bounding g—i

As with w, changes in A will either vacate area or occupy new area, but not both. The area

scales linearly with amplitude.

AE = % ( area under min-jerk curve) (15)
AA [/ wA
Ae - B4 1
£ A (1.875) (16)



AAw

AE = 1.875 (17)
AE

AA 1875 (18)
(95 WMAX

e 1
0A — 1.875 (19)

0.5.2 Gaussian submovements

Gaussian speed curves can also be uniquely described by three parameters, the amplitude of

the peak A, the time at which the peak occurs ¢, and the standard deviation of the curve o:

(r—t)2 ) .
v(1) = Ae 2.2 . The area under such a Gaussian curve is equal to /270 A.

0.5.2.1 Bounding %—f

Because Gaussian curves are unimodal, changes in ¢ will both occupy and vacate no more

than a rectangle of with At and height equal to the height of the function.

AE < 2AtA (20)
AE

- <

& < 24 (21)
o

9 < 94 22
5 < 2Auax (22)
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where Ajsax is the maximum amplitude of the submovement over the current subspace.

0.5.2.2 Bounding g—i

Changes in o will either vacate area or occupy new area, but not both. The change in area

occupied is given by:

AE = Ao ( area under a Gaussian curve) (23)
o

Ae = 27 (Vamoa) (24)
o

AE

A V21 A (25)

(;8 < V2mAuax (26)

o

0.5.2.3 Bounding gfi

As with o, changes in A will either vacate area or occupy new area, but not both. The area

scales linearly with amplitude.

AA

AE = 7( area under a Gaussian curve) (27)
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ae = 24 (V2roA) (28)

A
AE = V2roAA (29)
AE
M - \/%O’ (30)
o€
3714 < \/%O'MAX (31)

0.5.3 Lognormal submovements

Both minimum-jerk and Gaussian submovements are symmetric. Lognormal submovements
are asymmetric and hence are capable of reproducing the asymmetries often encountered in
measured submovements. A lognormal curve is created by plotting a Gaussian curve on a
logarithmic x-axis, instead of a linear x-axis. (Aitchison and Brown 1964) It can be expressed

as follows:

,{ [in(r—t)—p]

A(l% g, t) = 2" }7 T>1 (32)

1
o\ 27 (T — t)e

Four independent parameters control the shape and position of the lognormal curve. ¢
is the offset along the x-axis and controls the starting position of the curve. p controls the
extent of asymmetry, and o controls the kurtosis or “fatness” of the curve. As u gets larger
and o gets smaller, the curve moves from being left-skewed toward being symmetric. (A

lognormal curve cannot be right-skewed.) The fourth parameter is a scaling parameter, A.
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When scaled by o 2me=o"/D A, a lognormal curve, A, has a peak amplitude of A. As the
area under an unscaled lognormal curve (the distance travelled, the integral of the velocity)

is 1, the area under a lognormal curve of amplitude A is o 2melh=a?/2) A,

0.5.3.1 Bounding %—f

Because, like Gaussian and minimum-jerk curves, lognormal curves are unimodal, changes
in ¢ will both occupy and vacate no more than a rectangle of with At and height equal to

the height of the function.

AE < 2AIA (33)
AE

— <

~ < 24 (34)
o0&

— < 24

5% = 2AMmax (35)

where Aj;ax is the maximum amplitude of the submovement over the current subspace.

0.5.3.2 Bounding g—i

Changes in A will either vacate area or occupy new area, but not both. The area scales

linearly with amplitude.
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AA

AE = 7( area under a lognormal curve) (36)
AA 2

AE = = (AoV2mel"?) (37)
A

AE = (ov2me=" D) AA (38)

AE 2

28 o ua?/2)

A oV 2re (39)

08 VImeliniax—odax /2

74 < opaxV2meHMAXTOhax (40)

where or4x and ppr4x are the maximum o and p of the submovement over the current
subspace, respectively. The area under the lognormal cure is at a maximum for ¢ = 1 and
increases with p. Since o < 1 is capable of producing a full range of plausible submovement

shapes, maximizing both ¢ and p over the subspace maximizes the area under the curve.

0.5.3.3 Bounding gi

An analytical solution for % is not straightforward, and even if one is achieved, the expense
involved in calculating it during algorithm operation is likely to make the algorithm ineffi-
cient. The fact that p is bounded allows for numerical bounds on g—i to be calculated in a
brute force method off-line, before using the algorithm. By calculating ﬁ—i at a number of
positions throughout the solution space, a numerical upper bound can be found. Due to the

empirical nature of this method, it is sensitive to the bounds selected for p and . In this
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analysis, 2 <y < 5 and 0.02 < o <0.3.

AE
— < 4Ae# 41
A, S e (41)
o€
87/L S 4AMAX€MMAX (42)

where ppax and Apax are the g and maximum amplitude of the submovement over

the current subspace, respectively.

0.5.3.4 Bounding g—i

A bound on g—i can be calculate in a fashion similar to g—i. It is also sensitive to the bounds

selected for pand o (2 < pu <5 and 0.02 <o <0.3).

AE

- < ] H

A, S 4.5Ae (43)
o0&

—— < 45A HMAX 44
9% = SAmaxe (44)

where ppax and Ay ax are the maximum g and amplitude of the submovement over

the current subspace, respectively.
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0.5.4 Three-dimensional minimum-jerk submovements

This section provides an example of how the branch and bound algorithm can be applied to
higher-dimensional submovement analysis. The chief difference between 3D submovement
extraction as implemented here and 1D submovement extraction is that positional errors at

each time point are analyzed, as opposed to tangential velocity errors.

A 3D minimum-jerk submovement can be defined by five parameters: time of peak
velocity, t, the duration of the movement, w, and the amplitude of the peak in the x-, y-,

and z-directions, A,, A,, and A,.

The derivation of the error bounds for 3D submovements are graphically motivated,
just as those for 1D submovements were. In order to facilitate calculation of the error
bounds, the error, £, has again been chosen to be the absolute error (i.e. the {; norm or
JUfe(@) = g0+ [, (t) — gy ()| + | f2(t) — g-(t)|)dt, where g,(t) is x-position of the movement
at t, and f,(t) is the position of the reconstructed movement at ¢, etc.), rather than the root

mean square error (i.e. the [y norm or

[ \/(fx(t) —9:(1))2 + (fy(t) — g4(t))? + (f-(t) — g-(t))?dt). The change in error with a change

in each parameter (g—;) can be visualized as the change in area between the candidate func-
tion the objective function, this time in terms of position, rather than velocity, and scalar
summed across the multiple axes. The change in error can be no more than the sum of the

area newly occupied and the area vacated by the function during the parameter change.
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The distance, D, covered by minimum-jerk movement is equal to wA/1.875.

0.5.4.1 Bounding %—f

Graphically, the area between a submovement and it’s time-shifted twin is simply DAt.

AE = AtD (45)

AE

% =D (46)

= _ 4
AN 1.875 (47)
078 < wpax (Aemax + Aynmrax + Asnax) (48)
ot — 1.875

0.5.4.2 Bounding g—i

Changes in w will either vacate area or occupy new area, but not both, and will change the
total distance covered by the submovement. If the submovement is allowed to proceed to
completion, i.e. if the movement is not terminated before the submovement has a chance to
play out, then the error incurred during the life of the submovement is less than or equal to
| Dorig — Dnew| *w/2, where w the duration of either the new or old submovement, whichever

is greater. In addition, the distance error is propagated throughout the remainder of the
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movement. This leads to a total error bound of | D,yig — Dyew| * (T'—t), where ¢ is the time at
which peak submovement velocity is reached and T is the duration of the entire composite

movement.

Aw(A, + Ay + A)(T —1t)

AE < 4
£ s 1.875 (49)
23 < (Aemrax + Ayprax + Acprax ) (T — tarn) (50)
ow — 1.875

0.5.4.3 Bounding %

As with w, changes in A will either vacate area or occupy new area, but not both. The area

scales linearly with amplitude. The formulation is similar to the error for % and is identical

for each of the three axes.

AAw(T —t)
A A 1
£ 1.875 <5 )
o€ wyrax (T —tun)
< 2
0A, — 1.875 (5 )
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Captions

Figure 1. Problematic decompositions for current algorithms. The panels on the right show
the construction of the curves. The panels on the left show local minima in decomposition.
In each case the decomposition error is low, but the submovement characteristics do not

resemble those used to construct the curve.

Figure 2. A step-by-step example of the branch-and-bound algorithm in one dimension:
minimizing £(p) over a range of p. a) Bound the solution space between py,;;, and pmax.
b) Break the solution space into subspaces 1 and 2. c¢) Calculate the value of the objective
function at the center of each subspace, p.(1) and p.(2). Retain the lowest value, &4, in
memory. d) Calculate an upper bound for the slope of the objective function over each
subspace, U’(1) and U’(2). e) Calculate a lower bound for the objective function over each
subspace, L(i) = &(p.(i)) — G U'(i), where 7; is the span (width) of each subspace. f)
Eliminate subspaces that cannot contain the solution. Break down remaining subspaces.

Return to ¢) and repeat until the error falls below a predetermined threshold, i.e. subspaces

for which L; > &,..

Figure 3. Method for minimizing the number of submovements. An iterative error-checking
algorithm provides a framework for minimizing the number of submovements while optimiz-

ing the fit of the submovements employed.
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Figure 4. Decomposition of simulated speed profiles composed of minimum-jerk and Gaus-
sian submovements. Solid lines represent the original function in each case; dashed lines
show the decompositions into minimum-jerk submovements, and dotted lines show the de-
compositions into Gaussian submovements. The plots show bounds on the decomposition

error in each case.

Figure 5. Speed profile constructed for testing the noise sensitivity of the branch-and-
bound algorithm. A solid line shows the composite speed profile, and dashed lines show
the underlying submovements. A key characteristic of the curve is that peaks in the speed
profile do not always correspond to the peaks of the underlying submovements. A dotted
line shows the speed profile superimposed with Gaussian noise (from the 5% noise amplitude

case).

Figure 6. An example of shape variations in a single submovement parameterization. The
support-bounded lognormal function can take on a variety of shapes. Varying p changes the

symmetry, and changes in ¢ affect the kurtosis.

Figure 7. Submovements extracted from a simulated planar (two-dimensional) movement.
Solid lines represent the original movement, dotted lines represent the original submove-
ments, and dashed lines represent the extracted submovements. The trajectory described by
the extracted submovements differs from the original trajectory by approximately 1%. This

is due to the fact that a excessively high guaranteed maximum of error of 10% was used,
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in order to keep computation time reasonable. Applying greater computational resources
will result in more accurate submovement extractions. In this case, submovements and the
error were defined in terms of position, rather than tangential velocity. See Appendix for a

complete derivation of the three-dimensional case.
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Figure 3
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